for dirty materials. In ordinary superconductors with T, ~ 10K, Er ~ leV,
T ~ 1075 and ¢ ~ 20004, this gives a ratio 60 /0o ~ 10-*(T./(T — T.))"1/2 .
107*(T./(T — T.))~*/? ranging from clean to extremely dirty metals [25).

. As shown by the second equality of eq.(6.12), the fluctuation effects are greatly
enhanced in two dimensional samples by a factor 2{(T)/d. The experiment by
Glover [26] was in fact performed on a bismuth film. ‘

_In the case of high T. superconductors the smallness of the zero temperature
coherence distance o ~ 10A makes more accessible the region where the deviations
from the mean field theory [27] and the magnitude of the fluctuation c‘orrection are
apreciable in three dimensional clean samples also. In this ‘respect, measurements
of the resistivity in Y; Ba;Cu304_s high T. superconductors [32] strongly suggest ,
near the transition, the relevance of superconductive fluctuations in agreement with

the three dimensional expression derived by Aslamazov and Larkin [28].

7 THE MICROSCOPIC APPROACH

I) Hartree-Fock approximation

In the third section w? established the basis for a microscopic theory for super-
conductivity. This has to reproduce the fundamental requirement of ODLRO in the
two particle reduced density matrix and therefore the electrons have to be bound in
pairs.

We recall that the one and two particle reduced density matrices in the second
quantized formalism are written in terms of quantum statistical averages of products

1.

of creation and annihilation operators Yo (x) and 9,(x)
hy(x,x") =< 1/)I(x')1,b,(x) > (7.1)

ha(x1,%2; X35, x7) =< ¢I(x§)¢j(x’2)¢,(xﬁ¢,(x1) > (7.2)

where the sum over repeated spin indices is understood.
A normal system with electrons with momentum k and spin o can be approxi-

mated by a Slater determinant of Bloch functions, which in terms of creation oper-



t

ators in k space a; , can be written as
w>= II of,.al, 0> . (7.3)
o<iki<kr
kr being the Fermi momentum.

¥o(x) and ax, are related via the single particle wave functions g (%)
Yo(X) = 3 gk o (X)ak,- (7.4)
k

If we perform the average processes with respect to the state given by eq.(7.3), ks

is factorized in terms of k, as for a free electron gas
ha(%1, %25 X3, %1) = ha(%1, %7 )ha (%3, X3) — ka3, X5)h (%2, %} ). (7.5)

This is equivalent to the Hartree-Fock approximation.

This expression of course does not show ODLRO, since k; cannot have macro-
scopic eigenvalues According to its definition (3.20), ODLRO is present if we can
construct a ground state [s > which yields a generalized Hartree-Fock approximation

such that
ha(x1,%2; X3, %) = ha(X1, X])Ra(Xz, X3) — ha(x, x5)hy (X3, x)+

+x7 (%1, X3)x (%1, %2) (7.6)
where x has the meaning of the pair wave function. Bardeen Cooper and Schrieffer
have accomplished this task [14].

We shall now study their microscopic theory following the generalized Hartree-
Fock approach in the matrix form introduced by J.G.Valatin [33].

We start by considering the usual Hartree-Fock approximation for a normal
metal. It is essentially a variational method whose aim is to reach by means of
an effective field the best single particle "description” of a system of interacting

particles.



The Hamiltonian is formed by a two body interaction and a single particle energy

scaled to the chemical potential ) in the second quantized representation:

H = [ ax [ ax'yfx)ete xWo(x') +5 [ dx [ axsloepd )V (e, 0l ().
(7.7)
where

e(x,x') = (-%v’ - ,\) §(x - x') (7.8)

The Hartree-Fock approximation amounts to factor the expectation value of the
quadrilinear term into the product of two bilinear terms according to eq.(7.5). At

zero temperature the ground state energy is '
] ! ! 1 ! ! ’
Wo =< n|Hn >= /dx/dx e(x, X )ha (x', x) + 5/dx/dx U(x, x")hy (', x) =

Tr (éhl + l/hl) (79)

D] -

where the single particle energy v contains the Hartree-Fock self-potential U
v(x,x') = e(x,x') + U(x,x'),

U(x,x') = §(x - x) / dyV(x — y)hu(y,y) - V(x — x")hs(x,x'). (7.10)
The second ‘equality of eq.(7.9) is written in matrix notation and the potential V is

assumed to depend on x — x’ only. In the same approximation the single particle

reduced density matrix becomes

hl(x’xl) = Z nk,cgl‘;,o(xl)gk,o(x) (7'11)
lk|<kp
where
Nk, =< nlal'aak',ln >. (7.12)

So that in matrix notation
h? = h,. (7.13)
By minimizing the ground state energy Wo with the constraint (7.13) and introduc-

ing the Lagrangian multiplier % one has

§Wo— 6 (Trn[m—hl])=0 - (7.14)



with
§Wo = Trvbhy = / dx / dx'v(x, x')6hy(x', x). (7.15)

By exploiting the cyclic permutation in eq.(7.14) under the trace we obtain
v—n+nhi+hn=0.

The property (7.13) then gives rise to the Hartree-Fock equation [33] in the matrix

form:

{u, ky] = 0. : (7.16)

The connection with the usual form of the Hartree-Fock equation can be found in
ref. [33]. |
Whithin the approximation considered, according to eq.(7.15) the variation of
| energy from the ground state due to a variation of k, is characterised by what we
have called single particle energy v. We can therefore, approximate the quadrilinear
Hamiltonian (7.7) by the following bilinear expression
H ~ Ho = const + /dx/dx'zbl(x)u(x,x’)‘«p,(x') = const + Zukalpak',. (7.17)
ko

It has been assumed that

v = [ dx [ dx'g o (x)v(x,X)ge o () (7.18)

is diagonal, as it can always be done by a proper choice of the single particle states.
v acquires the meaning of single particle excitations from the ground state or ” quasi-
particles”. Hp can be obtained from H by a linearization procedure in which couples
of operators ¢1 (x) and 9, (x’) are substituted by their averaged value (7.11).

At T # 0 the same equation (7.15) is valid provided we consider k; =< 1,”1/: > as
obtained by a quantum statistical average over a restricted ensemble with statistical

operator

U=ePH (7.19)

expressed in term of the approximate Hamiltonian (7.17).



When we consider time-dependent phenomena as for example transport proi:—
erties it is necessary to know the behaviour ‘of the density matrix h, as a function
of time. In order to generalize the Hartree-Fock equation to the time dependent
case, we use the decomposition of h; in terms of single particle time dependent wave

functions

a6 X5 8) = i (5 ) (5, £). - (20)
ko .

4

Using the equation of motion for the single particle wave functions we get the time-

d'ependent Hartree-Fock equation in the matrix form [33]

ohy |

bt = vy ha]. : (7.21)

When the temperature js becoming higher and higher too many quasiparticles are
statistically excited so that they start interacting with one another. The previous
scheme of approximation loses its validity . Owing to the reciprocal scattering, the
quasiparticles have such a short life-time that their concept itself looses its validity.

II) The theory of Bardeen Cooper and Schrieffer

a)The ground state |

In superconductivity because of pair formation, eq.(7.16) is not adequate. We
shall generalize the matrix expression of the equation of motion in a form suitable to
the present case. Factorization procedure has to occur according to equation (7.6)
rather than according to eq.(7.5).

In order for the superconductivity phase to be stable with respect to the nﬁrmal
phase, the ground state , the state |s > we are looking for, must lead to a lower
energy than that of the ground state for the normal system |[n >. Because of the
isotope effect the interaction leading to superconductivity, at least for most of the
elements, must be due to phonons. The effective electron-electron interaction via
phonons is weak and attractive i.e. negative in a region around the Fermi surface
and it has not been included in the Bloch states which approximate the normal
electron states. Because of this interaction, pairs of electrons will be scattered from

states k; and k, to states kjand k) with momentum conservation. Even though



theA potential is negative, the matrix elements of the potential between different
spin configurations can be either positive or negative depending on the number of
transpositions of indices we have to make on the ordered state to calculate these
matrix elements. Statistically therefore, even with an attractive potential, we would
have a zero mean energy gain with respect to the normal case. We have therefore
to choose a subset of conﬁgurations such as to allow the potential matrix elements
to remain negative. If the states are occupied by pairs of electrons in the sense that
if one is occupied another related to it must be also occupied, theﬁ the number of
transpositions is always even and we have fulfilled our task. These pa,irs must have
the same momentum so that the number of allowed collisions is minimum and the
energy gain is maximum. Of course if there is no net flow this momentum must
be zero. We have reached again the point discussed in the third section i.e. the
superconductive state must be formed by bound pairs of electrons with opposite
momentum k and spin o. The ground state |s > is therefore a coherent mixing of
Bloch states occupied in pairs.

A normalized state satisfying all the requirements discussed above and leading

to eq.(7.6) is given by

lo>= TI ((1-m)"+ (m)%af ol ) 0> (1.22)

o<|ki<ky

In the absence of an external field and for the homogenous systems, the single
particle states are momentum states as we have said. In the general case the best
choice of single particle states gi(x) has to be determined by variational principle.

The state written above does not conserve the total number of particles. There
is in fact a probability different from zero for any number of pairs.This difficulty
of the formalism could be avoided by projecting on a N particle state . Because
of the large number of particles , however, no essential errors are introduced if we
impose that the averaged number of particles is equal to the total number N. This
introduces a constraint on the parameters hy and through them on the chemical

potential .



Let us check that what we have written as hy really corresponds to the occupation
number i.e. to the k space representation of the single particle density matrix. In

fact
hk.k' =< alal"ak,',h >= hksk,k' . (723)
ha(x, x') =< s} (XWo(x)|s >= T hagi , ()0 (). (7.:24)
k

Together with hy = ny = h_y, we have to define the new quantity
Xk’.l,k.T =< 3|ak,'1ak.1|s >= (hk)l/z(l -_— hkr)l/zsk'_ki = Xkak’_kl, (7.25)

XkrTvk'nl = -stk.-k'
X(%,x") =< slthy(x")1(x)ls >= 3 xxk,1(x)g-k, 1 (X')- (7.26)
: k
Xk coincides with the k representation of the pair wave function. In fact the ex-

pectation value of h, leads to eq.(7.6), with x defined according to €q.(7.25) and
€q.(7.26). We have the new constraint

(1= 2h_y)(1 = 2hy) + (2xx)* = 1. (7.27)

b)The quasi-particle excitations and ODLRO .
Because of the pair wave function, we have, in addition to the self-potential U

given by eq.(7.10), the pair potential
F’(x’x’) = V(x - x')x(x,x'), (728)

or in k space
P = / dx / dx'gic (x)u(x, x")gp(x') =

= F’kak,—k' = Z VkT,-—kl;k"f,—k"le"Jk,—k" (7.29)
kv

The integral of eq.(7.28) with respect to the relative coordinate x —x' gives Gor’kov’s
order parameter (3.23). This quantity appears in both the new ground state energy
Ws and the new linearised hamiltonian H, , which we have to write in the place of

€q. (7.9) and eq.(7.17) respectively. The ground state energy reads:

—_ _l ' ' ' l Iore ot '
Wo =< s|H|s >= 2/dx/dx e(x, x")ha (%', x) + 2/dx,/dx v (%, x')hy (', x)



+ 5 [ dx [ x)xix, x) = %; ((ex + 1) hx + prx) (7.30)

or in matrix notations
1 .
Wo = -2-Tr (eh1 + vhy + p"x). . (7.31)

Variation of Wy with respect to h and x under constraint given by eq.(7.27) leads

in the k-space representation to

bhy + pybxx + Ex (2xxbxx — (1 — 2hy)6hy) =0 | (7.32)

where Ey is a Lagrangian multiplier.

Solutions of the above equations are

_1 vk | Iy
b= 5 (1 Ek) =55 (7.33)
and
Be=(p+ud)”. (7.34)

According to eqs.(7.23),(7.24) and (7.25),(7.26) the linearization procedure of the
Hamiltonian we have carried out to get the excitation Hamiltonian valid in the
normal case, leads now to an expression which contains both k; and x and therefore

v and p
1
Hqy = const + E Vkal,,ak,a + 3 Z”'k (alt'TaL{.1 + a-k,lak.r) . (7.35)
| ¥4 k

This expression is clearly non diagonal and we have therefore to introduce a canonical
transformation in order to diagonalize it. New operators {x, and El’d have to be
1.

introduced satisfying the same anticommutation rules as ay, and ay ,- The famous

Bogolubov-Valatin transformation [33, 34, 35] is
e = (1~ ) o, — o) 2al,, (736)

61,0 = (1 - hk)llzal,o - a(hk)lna—k,—a (737)



The ground state |s > given by eq.(7.22) is the vacuum state for the operators § i.e.
éx|s >= 0 for any k. |
Provided hy is given by eq.(7.33) after transformation , the Hamiltonian (7.35)

reduces to

Ho=Wo+Y Extl .. (7.38)
k,o

Here Ej is the new quasiparticle energy.
Let us take for simplicity a model in which the Hartree-Fock self-potential U is
zero and the potential V can be assumed as a constant in a region 2wp around the

Fermi surface, wp being the Debye frequency
Vkt-kukt-ky = -V —wp e e Swp

Vkt-kiki,-ky =0  otherwise (7.39)

as in the B.C.S. original paper.
The pair wave function in the k representation is spin independent i.e. in the
bulk superconductors x_x;x1 = xx and the pair potential px reduces to a constant

A,A being the gap energy appearing in the quasiparticle spectrum. In fact from
eqs.(7.29) and (7.33) we have

Bk 1
A=p=V et 2By VA{-,: 2B’ xlSer

A=0 otherwise, (7.40)

wp is much smaller than the Fermi energy and the density of state in the shell 2uwp

around the Fermi surface can be considered constant. Equation for A then reads:

1 - wD de _ -1 {wD
W=k @rar e (R): (741

where Nj is the single particle density of states at the Fermi energy. For most

superconductors NoV <« 1 and we get

A ~ 2wpe NV (7.42)



The Debye frequency wp present in the last equation acco;.lnts for the isotope effect.

Solution (7.41) is clearly non perturbative. This is the reason for the difficulty
in explaining superconductivity i.e. superconductive behavior cannot be obtained
by any perturbative expansion from the normal state. In fact we had to imagine
a completely new state. We were guided by many considerations, among them the
factorization property (7.6) for h; in order to have condensation. Bardeen, Cooper
and Schrieffer at T' = 0 have calculated within their model the behavior of the
functions ¢(r) = 1/(aN)*?x(r) appearing in €q.(3.20). It turns out

m  ¢BOS(r) =

r=|X; ~X3|-+00

c |1 A .
= '(0)1/2 [;Ko ('"_2;) + E”Tig.ﬂn (Z—:;;)] . (7.43)

Kp is the modified Bessel function with an asymptotic exponential decrease. The

. 1 _
r=|x;11213|—wc (CIIV)I/2 X(r) -

second term proportional to 1 /r’ is usually neglected because of the smallness of the
ratio A/wp. However we stated that ODLRO automatically leads to condensation
for the restricted class of functions sensibly different from zero in a finite region of
r.

So that even in B.C.S. theory in order to show the state |s > given eq.(7.22)
leads to condensation we have to solve explicitly the eigenvalue equation for the
two particle reduced density matrix h, given by €q.(7.6) , considering explicitly the
B.C.S. solution (7.33) for h and x [13].

Fourier transforming the eigenvalue equation

/dx’l/dx;hz(xl,xz,x’,,x{)¢,-(x’1,x’2) = Nidi(x1,x2) (7.44)
and using the explicit B.C.S. expression (7.6) and (7.33) ,we obtain
hi(¢(k)+¢(—k>)+§¢<k')x;,xk = (k) (7.45)
or remembering that ¢(k) = ¢(—k), we have

LK) ;‘k';‘,‘; = ¢(k), (7.46)



which reduces to

_ v _adf
1= zk: X2 _ . (147
From equation (7.33) it turns out that
9] .
. 2 _ 3 2 _ .
Aim Dhal’ = g [ kbl = aN (7.48)

~ with finite a. .
hx is the microscopic occupation number of the state k and is therefore negligible

as compared to N in the limit of N — oo. In this limit (7.45) admits an eigenvalue
A=) |xxl*=aN : (7.49)
k .

and in the same limit no other isolated eigenvalue exist. As suggested in the third

section the eigenfunction corresponding to this maximum eigenvalue is from eq.(7.43)

¢(k) = (&T\})T;;Xk (7.50)
i.e. it coincides but for the factor (aN)!/? with the function which characterised the
ODLRO property of h, as in eq.(3.20).

In so far we have discussed the B.C.S. microscopic theory for superconductivity
at zero temperature. In the remaining of this section we shall briefly sketch how
to extend this result at finite temperature referring for a detailed derivation to the
original paper of Bardeen, Cooper and Schriffer [14] or to the references [33, 36].

As we have seen the ground state |s > is the vacuum state for the quasiparticles
defined by the Bogolubov-Valatin transformations defined in eqs.(7.36),(7.37) with
the Hamiltonian given by eq.(7.38). At T = 0 no quasiparticles are present so that
the quasiparticle number operator applied to the fundamental B.C.S. state is zero.
At T # 0 however the quasiparticles being fermions will satisfy the Fermi statistics
ie. |

fe=<8 b >= (1+5)™
where the average is a quantum statistical average and no sum over spin indices is

here understood. Furthermore we shall indicate whenever necessary the quantities

at T # 0 with a bar.



‘The new quasiparticle energies Ej have the same expression of the eq.(7.3;1)
with the self-potential 7 and ji. ¥ and fi are obtained from the definition (7.10) and
(7.28) of v and p. The temperature dependent h and i appear in place of & and x

respectively and it is easy to show that

(1= 2hy) = (1— 2hg)(1 - 2fx)

-4

and
Xx = xx(1 - 2x).

' The entropy of a Fermi gas of quasiparticles is known in terms of their occupation
number fi. So the free energy is F = Wy — T'S,. In the pre;ent case the solution of
the problem at T # 0 is. obtained by minimizing the free energy with respect to Ay
, Xk and fx with the constraint eq.(7.27).

Under the hypothesis of eq.(7.39) and assuming the Hartree-Fock potential U =

0, the gap equation reads
1 v de 1.
= [ 2 (_ B ) 7.51
w7 = (2 + &2)" 2P B (7.51)

Near the critical temperature at which the gap energy vanishes [14], the explicit

behavior of A as a function of the temperature is

as derived but for a normalization factor from the Landau-Ginzburg equation. A
specific heat jump as given by eq.(5.12) is also obtained [14].

The results obtained so far make clear that we can establish a direct connec-
tion between the phenomenological Landau-Ginzburg theory and the generalized
Hartree-Fock type of approach. In the Appendix A we show that the time dependent
Landau-Ginzburg equation (6.2) for the order parameter can be derived from the
microscopic theory on the assumption of being near the critical temperature where

the magnitude of the order parameter is small. Small space and time variations of



the order parameter are also considered. Here we report the miCroscopic expressions
obtained in the appendix for the coefficients which appear in the phenomenological
Landau-Ginzburg theory |

h? T.a'\? T.a' - '
ot (L =gk ,
¢ =g b B(No) . 1=037 (1.52)
where
o T(3)  Nexh
B=NogrksTy &= 8oty (7.53)
and L?is '

A 7((3)Er '
22 _KW)Er . .
2m 12(xkpT.)? ' (7.54)
for clean metals and
_ mh vir
T 24 kgT.

for dirty superconductors. {(z) is the Riemann zeta function.

L2

(7.55)

Recalling the eq.(5.26) for the zero temperature coherence distance ¢, we obtain

in both limits (clean and dirty)

e P
bo = 20'T, 2 (7.56)

We find here, as one could have expected from the qualitative argument given at
the end of section 5, th‘at in going from the dirty to the clean case one has to make
the substitution D ~ (prl/m) ~ (Epr/m) — (Ep/m)(h/ksT:).

The expression for the Landau-Ginzburg relaxation time reads

_ a 8k
LG = N = W—:(T -T.) ) (7.57)

and the specific heat jump of eq.(5.12) becomes

a*T, _ 8Nom?k}T. _ 12
b 7¢(3) 7¢(3)

C. being the the specific heat in the normal phase at T..

AC =

C, = 1.43C, (7.58)

We have in this way completed our excursion from phenomenology to microscopic
theory and back to phenomenology, having been guided by the condensation criterion

and its consequences which are transparent in the density matrix approach.



Appendix A MICROSCOPIC DERIVATION OF THE
TIME-DEPENDENT LANDAU-GINZBURG EQUATIONS

A derivation of the Landau-Ginzburg equation from microscopic theory was given
by Gor’kov {15] for pure materials and alloys. Gor’kov's derivation is valid near the
critical temperature where the magnitude of the érder parameter A is small. Spatial
variations of the order parameter and of the external fields are also small.

The time dependent Landau-Ginzburg equation has been derived in many dif-
ferent ways essentially by means of the Green functions technique ..[37, 38]. An
extension which includes the effects of the lattice vibrations on the relaxation rate
of the order parameter has been also tried [39, 40] and the case of alloys with para-
magnetic impurities has been considered in reference [41]. A complex analysis of the
different regions of validity of a time dependent differential equation for the order
parameter is given in references [42, 38]. The full discussion of this problem cannot
be reported here. .

In order to be as simple as possible we report the derivation given in reference
[29] where the density matrix approach [33] so far considered, is used.

The behavior of a superconductor has been described in terms of the two quan-
tities h(x,x',t), x(x,x’,t). h is the one particle reduced density matrix and its
diagonal elements give the electron density, while x is the normalized eigenfunction
of the two particle reduced density matrix and represents the wave function of the
paired electrons in the condensate. No spatial inhomogeneity is allowed as long as
h and x are in the diagonal form (7.23)and (7.25) in k space. We have to generalize
these equations to include spatial variations. At T = 0 we can write a generalized

density matrix K [33] in the quasi particle space generated by the transformation



(7.36)and (7.37) to take into account the pair wave function x

hy O 0 Xk \

0 & - 0 h
K= k Xk = x . (A1)

0 —xx 1-hg 0 -x* 1-4A"

xk O 0 1—-hy ),

The equations of motion for the generalized density matrix K are determined by

a generalized "single particle energy” which incliides the pair potential and is given
by the matrix M

w 0 0 oy

0 - 0 v

M= Yk Hk = # (A2)

0 —px -u O —p -V

e 00—
where v(x,x’) is the self-consistent single particle Hartree-Fock Hamiltonian and
p(x,x’,t) is the self-consistent pair potential (7.28) which is related to the Lan-

dau order parameter. Of course in the case presented above the transformations

(7.36),(7.37) diagonalise M, which commutes with K
[M,K]=0 ' (A.3)

and because of eq.(7.27) '
K?=K. (A4)

Equations (A.3) and (A.4) are the direct generalization of the Hartree-Fock equa-
tions (7.16) and (7.13). In the case of inhomogenous system h and x are no more
diagonal in k space and the Bogolubov-Valatin transformation must be generalised
to include coefficient depending both on k and k'. The explicit representation given
by the first matrix of eq.(A.1) and eq.(A.2) is no more valid. These equations how-
ever are still valid provided A, x, v and p are matrices with off-diagonal elements.

The equation of motion for K within the generalized Hartree-Fock approximation
is then

0K

ih— = [M,K]. . (A.5)



Eq.(A.5) is the straightforward generalization of eq.(7.21); The approximation un-

derlying eq.(A.5) is the factorization propert& (7.6) of the two-particle reduced den-

sity matrix h;. Eq.(A.5) is also obtained at finite temperature provided all the

quantities here considered are the quantum statistical averages h,%,7 and /i nece-

sary to define the temperature dependent X and M.

In order to solve this equation in the general case of space and time variation of

the order parameter, we shall set up a perturbative approach.

Our purpose is to derive an equation describing the time and spatial variation

of the order parameter and the related density and current variations. The last

two quantities are known once the one-particle density matrix k is known. The self

consistency requirement (7.28) tells us how to build the order parameter A once

~ X is known. All the physical quantities we are interested in are therefore obtained

once we know how to calculate the matrix K at all orders with respect to a fictitious

external source

M= ( 0 GA(xY) ) . (A.6)
—6i*(x,t) 0

The zeroth order solution is supposed to be time-independent and known, i.e. the

matrices M(® and K are such that

(1, KO = o,

At the various orders we have:

h

ih@ = [#©, R0 4 [11®, K] 4 [11(E®), k)]
w220 _ (50, k) 1 [0, RO) + [H(ED), K] + ), &)

8K

0

; t)(t) _ [M(o),R(a)]+[Me(l)’R(z)]_._[M(f{(l)),R(z)]_*_[M(R(”),f{(l)]_'_[M(R(:i)),f{(o)]



The various M(K®)) come from the fact that the self-pc;tentia.ls U and gt al;-
pearing in M are related to the A() and () and therefore to K® through the
self-consistency relations.

Rearranging the preceding equations we obtain

ih% = [MO, RO+ RO+ RO 4 ]+

(2D + M(RD) + M(ED) + ..., kO] +
[F + J(RD) + BRD) + .., K] 4. = 0
Wé define a new M) = MM + M(KM) + M(K®) + ... and find that the zeroth
order equation is not changed whereas at the n-th order we have

5

= [M©), B™(e)] + [#rV ), K1) (A7)

Eq.(A.7) is very suitable for the self-consistent calculation we are performing. Due
to the self consistency conditions each term contains corrections at any order.

The formal solution of eq.(A.7) can be put in the following form
- LIt . ' _ — . '
K(n)(t) - _%: '/;oo dtle—zﬂ(o)(t—t WA [M(l)(tl)’ K(u-—l)(tl)] etﬂ(o)(t—t Y, (AS)

as it can be seen by differentiation.

From now onwards to avoid unnecessary complications we shall always consider
the Hartree-Fock self-potential U equal to zero.

Eq.(A.8)becomes easy to handle if M(°) appearing in the exponenﬁal is in a diag-
onal representation. In the general case we have therefore to work in the quasiparticle
space obtained by means of the Bogolubov-Valatin transformation. At T # 0 these

transformations bring M(®) into the diagonal form

E, 0 0 0
o =ygoyp- | 0 00}
0 0 —-E, 0



fu 0 0 0 )
kO —pgog-ao| 0 e 0 -0 ,
0 0 1-4 0
00 0 1-f)-

where fi is the Fermi quasi-particle distribution.

In the transformed quasiparticle space the solution of the time dependent equa-
tion of motion is still of the form (A.8) K

™) = _%' /" dt'eMOXE)N [ Fra)gr), K0 dMOe-6m (pg)

The perturbing term M) is the transformed form of expression (A.6) and is of
course much more involved then the original one. The calculation in this general
form is very cumbersome and the explicit expression for %(1) is reported in detail in
reference [29]. The goal of obtaining a time dependent differential equation for the
order parameter in this general situation is subjected to severe restrictions [38, 41].

We work near the critical temperature. Let us consider the relatively simple
case where the zeroth order pair potential i(°®) can be neglected. This is obviously
the case at T > T, where ji(® is rigorously zero and ji(t) gives the fluctuations of
the pair potential and therefore of the order parameter. The equation obtained is
therefore connected to the relaxation of the order parameter towards the equilibrium
condition A = 0. _

At T < T. we need either that a characteristic frequency w of the system is much
greater than Ag or to be in the gapless regime.

Under the previous hypothesis M(!) contains the full self-potential j:

_ 0 & |
Mm:( - ;‘) (A.10)
~f

and the expression for M(®) reduces to the usual kinetic term i.e.

po=| < .
0 —e¢



We have therefore

eiﬂ(o’(t—t')/h - eie(t-u)/h 0
0 e-ielt=t)m |

We can now start from eq.(A.8) for K™ At first order we have:

£ %® ya | gmielt=t)/h 0
—®m 1w | ke | g gie(t—t)/n

0 & JA0) (©) ie(t—t')/h 0 :
“, X ‘ . (A1)
- —%*© 1 -4~ 0 e—ve(t—t')/n

Working with spin independent forces, in the k representation the preceding equation

gives rise to

At
Rk =0,
. [t . . . :
).Zg(l.;(,(t) = —-;— /;“ dt’e“(‘k""k:)(‘-‘ )/hAk,k'(t’) (1 - Bk(o) - hg)) . (A.12)
We have used the approximation (3.23) for the order parameter where

A= / d(xy — x2)fi(x1,%3)

in the approximation Ey = |ex| (A® = 0)

71&8(, = Bkék,k'
2 =1
hy T 14ezp(Bey) (A13)
1-— 77,]( - Bk' = % thp—;k + thﬁ—;lﬂ)
=1 («9‘ + 6.

At the second order for the relevant quantities %(>) and A(?) we have:
52(2) =0

- [t , ' . '
h(2)(t) — __;’i_/ dtle—u(t—t i3 (—ﬂ(t’)f‘(l)(t') + X,(l)(tl)p-(tl)) eu(t—t )R (A14)

and similarly

R®) =0



. . t . . , _ ) ,
x(t) = —% /_ . dt'e™ C=VM (_p(¢) Ot + RO(E)E" (1)) e -¢IA. (A.15)
In general we have:

RO~ — 0 500 = 0, (A.16)

The k representations of eq.(A.14) and (A.15) are easily obtained. Of course they

are greatly involved. For instance fl(:}(,(t) is
(2) 1,i,rt ,c'.".. v eVn
r‘kkt(t)='2'(g) / dt / dt e~k Kk )e=t)/
¥ P —co
Y {Akk, ()AL, o (£)(61 + 8')e T i )E=HIR

ky

+ Ay, () A%, 1o (E')(6) + 6)e ™k HuNE =)/ (A.17)

We have taken the matrix elements of equation (A.14) and used eq.(A.12). The
expression (A.17) for h(?) will be used to calculate the current and the density.
We now proceed to calculate the equation for the order parameter A.The self-

consistent equation for A up to the third order in i is
A(z) = —g (V(z,2) + %)z, z)) (A.18)

where according to the explicit expression (A.12) for iﬁ%{. and the matrix form for
X®), both %) and %® are in turn functions of A evaluated at different points in
space and time. Here A(z) with z = (x,t). In the presence of a slowly varying
external field (A, V) we restrict ourselves to the quasi-classical approximation for

the single particle wave function gy(z)
9k(z) = eF 4wy (z) (A.19)

where we have used the four vector notation A = (A, V) with A the vector potential
and V the scalar potential. wy(z) are the single particle wave functions in the

absence of external fields and are chosen to be real. We have now

Prcge(t) ~ Bicge(t) = [ dxA(x, £)gi(x, t)gf(x, 1) (A.20)



and

%(z,z) = lggk(z)gw(z)xk.ww. | (A.21)

The self-consistent €q.(A.18) for the order parameter can be written

A(a:) = %% EE' _/;; dt'/dx’ezp(-i(ek + e )(t — t')/R)

A(z")gk(2")gk:(z") g (2 ) 9w (z)(6 + 8') +.third order terms (A.22)

We have used eq.(A.12),(A.13),(A.20) and (A.21).
| Assuming slow variation in space an time (among other things the. semiclassical
approximation fails otherwise), we expand the exponential (A.19) and A(z’) in a
Taylor series about the point z according to a standard procedure used in the time
independent problem, as for instance in [43] where highly concentrated alloys are
discussed and results are given in terms of scattering time only as in the case of the

dilute systems [15]. We obtain:
A ()6 (=)o (=)0 () () = wx( Y (&' Y2 2)

A(z)+ D (' — 2)abaA(z) + % Y (2! = z)alz’ — 2)s8aFsA(2) (A.23)

a=1 a,f=1

where
2ieA,
-

Note the factor two in the derivative due to the pair condensation.

b, =8, ~

(A.24)

Apart from calculation, it is clear now how to get a differential equation for A.
We substitute eq.(A.23) into eq.(A.22) and obtain A as a function of A itself and its

derivative; each term contains a coefficient which has to be calculated by integration:

4
A=QA+Y S.8.A+

a=1

1

*3

4
3" LapBadsA + RIAPA. (A.25)

a,f=1



The third term has not been discussed éxplicitly here and is the same as in the
time-independent case [43]:

R= —gNoé-(—:%%)_z. ' C(a)
where No is the density of states at the Fermi energy N, = (mf;/21r’h’). After
integration over time, coefficients Q and L;; (i,j = 1,2, 3) of the term with no time
deﬁvative reduce to the usual time-independent values:

T.-T

Q=1+gNo Tc

(A.27)

and in the isotropic case

%Li,j = NoL?6;; L*= %ﬁ% | "::: ;l::n auperqon;luc:ora (A.28)
T T y superconductors
7 is the scattering time, vr and Ep are the Fermi velocity and energy respectively.
We do not perform explicitly the calculations because they are widely discussed in
the literature. Starting from ref.[29] where they are derived, the reader can also
easily make a connection with all the other papers where they are given explicitly
[15, 42, 37, 38, 43], especially with ref.[43]. We shall rather discuss fully the time-
dependent terms. The mixed terms containing both time and space derivative vanish
by symmetry owing to the presence of the factor x' — x in Li; (1, =1,2,3). The
same applies to coefficients S;. So that we are left with S, and Ly only, ie. the
coefficients of the terms containing the first and second time derivative of the order
parameter, respectively. The last two terms give the time dependent correction to

the ordinary time independent Landau-Ginzburg equation.

We write them explicitely:

Sy = i-2% Ek:, /:; dt'ezp i (ex + exr — in) (t' —t) /K]
(t' =) (6 + 6') < wie(xYwie (X )wie (x ) (x) >, (A.29)
Lu=iZ 3 [* dtespli(e+ a0 — in)(t' - &) /]

kk "™



(t = £ (6 +6') < wn(x' Yo (Yo (xYun(x) >, (A.30)

where the 71 is an adiabatic switching on parameter and the the brackets < ... >
denote the averaging procedure over the impurities if they are present. Let us

calculate S by way of example. We integrate eq.(A.29) over z' and sum over k' and

get
g 2 1
Se=1=) 0 < |Jux(x)]* > - . (A.31)
Y (2ex — in)?/7
Remembering that around the Fermi energy
Y < wi(x)wy(x) >= N,
kGSp
~ and
=thk _ 1
6= thzT - 2T§ €k — twy,
with wp, = (2n + 1)7kpT we can use the countour integration to get
) o 6(e) Norh
= = - . .32
S4 zghNo/_wde(ze__in)z e (A.32)
Using a similar procedure one obtains
7¢(3)
Liga= QNOW- (A.33)

With the previous values (A.26,A.27,A.32,A.33) of the coeffcients we get the time-

dependent Landau-Ginzburg equation for the order parameter

2 2 . 2 ’
an+B|ap -2 (2 4 oievn A—c(v-gffA) A+
2 \ & n
o .
+G (5 +2ieV/m) A =0 (A.34)
where .
o T-T, L UB) . Nomh
A=No—7==, B=Nogro oo, C=Nol, G= o (A3)

Eq.(A.34) is the time dependent Landau Ginzburg equation for the fluctuating order

parameter. Within the approximations considered the second time derivative can be



neglected. When A is time independent eq.(A.34) reduces to the ordinary Landau-

Ginzburg equation but for a normalization factor (3.24)

hz 1/2 12 .
and we get the explicit expressions for the Landau-Ginzburg parameters
o' =274, b=27B, v=2"'G - (A37)

reported in eq.(7.52).
. The current in terms of the density matrix [33]is

J(x) = —i%zi(Vx Vx Yh(x, %', t)|x=x' — 2iA(x)h(x,x t). (A.38)

In the k representation this becomes
I(z) = —(ieh/m) 3 hro(t) (95 Vox — 9x Vi) — (2¢*/m)A(z)h(=z,z). (A.39)
| & J
Whithin the semi-classical approximation (A.19) the current is given by
J(z) = —(ieh/m) Z l.zk'k,(t) (wi Vg — wxVwy) . (A.40)
. kX
Since hk k' is diagonal, Bk i is identically zero and h k k+ Vanishes when A = 0, we do
not have the ohmic current. This is due to a.ppro:nmat;on (A.19) which is valid for a
nearly constant V. Using expression (A.17) for hk k Where the A’s are transformed
in configuration space by means of the gi’s we can again expand A and g as in the
equation for A itself. The contribution to the current of the time derivative of A
vanishes and J reduces to the time independent [43] expression -

J(z) = 2iehN,L? [A (V + ?%EA) AT - AT (V - %EA) A] (A.41)

where L? is given by eq.(A.28). With the normalization factor (A.36) J is identical
to the phenomenological expression (4.8).
The charge density fluctuation is given in the k representation by

R (z) = 2"33 L (8)gi(2)ox(=)- (A42)



By taking now the time derivative of this last equation and performing the calcula-
tions according the lines previously discussed, we obtain the following expression
8R2)(¢) , . (K*B 8 (. (8 .. ]
5 = —2div] — 2ie (Tb—t- - G) (A (gt_ - 2zeV/h) A -—_c.c) . (A43)
If we now use the time dependent Landau-Ginzburg equation for the order param-

eter, we can show that a continuity equation holds

U]

—gy + divd = 0. (A.44)

Hence, within the approximations used, the charge is conserved if and only if the
equation of motion for the order parameter is satisfied .

Further we note that by putting A = |A|e, the equation for the density becomes

(2) 2 .
W= (B2h-c) (Grsvmiar). s

which implies that the density is constant and the system is stationary whenever
the Josephson eq.(4.14) is satisfied.

We have so established a close connection between the microscopic theory and the
phenomenological approach discussed in the first four lectures and derived the second
from the first one. Besides the other restrictions previously discussed, the validity of
equation (A.34) for A is restricted to the validity of the mean field approximation,
i.e. the present theory is included in the class of the so called ”classical” theories
plus corrections due to small fluctuations. Hence any result we derive from eq.(A.34)
will fail too close to the critical point where corrections due to the scaling theory of
critical phenomena have to be added. ‘
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